254 research outputs found

    Fixed parameter tractable algorithms in combinatorial topology

    Full text link
    To enumerate 3-manifold triangulations with a given property, one typically begins with a set of potential face pairing graphs (also known as dual 1-skeletons), and then attempts to flesh each graph out into full triangulations using an exponential-time enumeration. However, asymptotically most graphs do not result in any 3-manifold triangulation, which leads to significant "wasted time" in topological enumeration algorithms. Here we give a new algorithm to determine whether a given face pairing graph supports any 3-manifold triangulation, and show this to be fixed parameter tractable in the treewidth of the graph. We extend this result to a "meta-theorem" by defining a broad class of properties of triangulations, each with a corresponding fixed parameter tractable existence algorithm. We explicitly implement this algorithm in the most generic setting, and we identify heuristics that in practice are seen to mitigate the large constants that so often occur in parameterised complexity, highlighting the practicality of our techniques.Comment: 16 pages, 9 figure

    On the Equivalence among Problems of Bounded Width

    Full text link
    In this paper, we introduce a methodology, called decomposition-based reductions, for showing the equivalence among various problems of bounded-width. First, we show that the following are equivalent for any α>0\alpha > 0: * SAT can be solved in O∗(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * 3-SAT can be solved in O∗(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * Max 2-SAT can be solved in O∗(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * Independent Set can be solved in O∗(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, and * Independent Set can be solved in O∗(2αcw)O^*(2^{\alpha \mathrm{cw}}) time, where tw and cw are the tree-width and clique-width of the instance, respectively. Then, we introduce a new parameterized complexity class EPNL, which includes Set Cover and Directed Hamiltonicity, and show that SAT, 3-SAT, Max 2-SAT, and Independent Set parameterized by path-width are EPNL-complete. This implies that if one of these EPNL-complete problems can be solved in O∗(ck)O^*(c^k) time, then any problem in EPNL can be solved in O∗(ck)O^*(c^k) time.Comment: accepted to ESA 201

    Challenges for Efficient Query Evaluation on Structured Probabilistic Data

    Full text link
    Query answering over probabilistic data is an important task but is generally intractable. However, a new approach for this problem has recently been proposed, based on structural decompositions of input databases, following, e.g., tree decompositions. This paper presents a vision for a database management system for probabilistic data built following this structural approach. We review our existing and ongoing work on this topic and highlight many theoretical and practical challenges that remain to be addressed.Comment: 9 pages, 1 figure, 23 references. Accepted for publication at SUM 201

    Dynamic programming for graphs on surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2O(k·log k). Our approach combines tools from topological graph theory and analytic combinatorics.Postprint (updated version

    Dynamic Programming for Graphs on Surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2^{O(k log k)} n steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called "surface cut decomposition", generalizing sphere cut decompositions of planar graphs introduced by Seymour and Thomas, which has nice combinatorial properties. Namely, the number of partial solutions that can be arranged on a surface cut decomposition can be upper-bounded by the number of non-crossing partitions on surfaces with boundary. It follows that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in 2^{O(k)} n steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve most previous results in this direction.Comment: 28 pages, 3 figure

    Hitting forbidden subgraphs in graphs of bounded treewidth

    Get PDF
    We study the complexity of a generic hitting problem H-Subgraph Hitting, where given a fixed pattern graph HH and an input graph GG, the task is to find a set X⊆V(G)X \subseteq V(G) of minimum size that hits all subgraphs of GG isomorphic to HH. In the colorful variant of the problem, each vertex of GG is precolored with some color from V(H)V(H) and we require to hit only HH-subgraphs with matching colors. Standard techniques shows that for every fixed HH, the problem is fixed-parameter tractable parameterized by the treewidth of GG; however, it is not clear how exactly the running time should depend on treewidth. For the colorful variant, we demonstrate matching upper and lower bounds showing that the dependence of the running time on treewidth of GG is tightly governed by μ(H)\mu(H), the maximum size of a minimal vertex separator in HH. That is, we show for every fixed HH that, on a graph of treewidth tt, the colorful problem can be solved in time 2O(tμ(H))⋅∣V(G)∣2^{\mathcal{O}(t^{\mu(H)})}\cdot|V(G)|, but cannot be solved in time 2o(tμ(H))⋅∣V(G)∣O(1)2^{o(t^{\mu(H)})}\cdot |V(G)|^{O(1)}, assuming the Exponential Time Hypothesis (ETH). Furthermore, we give some preliminary results showing that, in the absence of colors, the parameterized complexity landscape of H-Subgraph Hitting is much richer.Comment: A full version of a paper presented at MFCS 201

    On the stable degree of graphs

    No full text
    We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree

    Constant-degree graph expansions that preserve the treewidth

    Full text link
    Many hard algorithmic problems dealing with graphs, circuits, formulas and constraints admit polynomial-time upper bounds if the underlying graph has small treewidth. The same problems often encourage reducing the maximal degree of vertices to simplify theoretical arguments or address practical concerns. Such degree reduction can be performed through a sequence of splittings of vertices, resulting in an _expansion_ of the original graph. We observe that the treewidth of a graph may increase dramatically if the splittings are not performed carefully. In this context we address the following natural question: is it possible to reduce the maximum degree to a constant without substantially increasing the treewidth? Our work answers the above question affirmatively. We prove that any simple undirected graph G=(V, E) admits an expansion G'=(V', E') with the maximum degree <= 3 and treewidth(G') <= treewidth(G)+1. Furthermore, such an expansion will have no more than 2|E|+|V| vertices and 3|E| edges; it can be computed efficiently from a tree-decomposition of G. We also construct a family of examples for which the increase by 1 in treewidth cannot be avoided.Comment: 12 pages, 6 figures, the main result used by quant-ph/051107

    On Sparsification for Computing Treewidth

    Full text link
    We investigate whether an n-vertex instance (G,k) of Treewidth, asking whether the graph G has treewidth at most k, can efficiently be made sparse without changing its answer. By giving a special form of OR-cross-composition, we prove that this is unlikely: if there is an e > 0 and a polynomial-time algorithm that reduces n-vertex Treewidth instances to equivalent instances, of an arbitrary problem, with O(n^{2-e}) bits, then NP is in coNP/poly and the polynomial hierarchy collapses to its third level. Our sparsification lower bound has implications for structural parameterizations of Treewidth: parameterizations by measures that do not exceed the vertex count, cannot have kernels with O(k^{2-e}) bits for any e > 0, unless NP is in coNP/poly. Motivated by the question of determining the optimal kernel size for Treewidth parameterized by vertex cover, we improve the O(k^3)-vertex kernel from Bodlaender et al. (STACS 2011) to a kernel with O(k^2) vertices. Our improved kernel is based on a novel form of treewidth-invariant set. We use the q-expansion lemma of Fomin et al. (STACS 2011) to find such sets efficiently in graphs whose vertex count is superquadratic in their vertex cover number.Comment: 21 pages. Full version of the extended abstract presented at IPEC 201

    Families with infants: a general approach to solve hard partition problems

    Full text link
    We introduce a general approach for solving partition problems where the goal is to represent a given set as a union (either disjoint or not) of subsets satisfying certain properties. Many NP-hard problems can be naturally stated as such partition problems. We show that if one can find a large enough system of so-called families with infants for a given problem, then this problem can be solved faster than by a straightforward algorithm. We use this approach to improve known bounds for several NP-hard problems as well as to simplify the proofs of several known results. For the chromatic number problem we present an algorithm with O∗((2−ε(d))n)O^*((2-\varepsilon(d))^n) time and exponential space for graphs of average degree dd. This improves the algorithm by Bj\"{o}rklund et al. [Theory Comput. Syst. 2010] that works for graphs of bounded maximum (as opposed to average) degree and closes an open problem stated by Cygan and Pilipczuk [ICALP 2013]. For the traveling salesman problem we give an algorithm working in O∗((2−ε(d))n)O^*((2-\varepsilon(d))^n) time and polynomial space for graphs of average degree dd. The previously known results of this kind is a polyspace algorithm by Bj\"{o}rklund et al. [ICALP 2008] for graphs of bounded maximum degree and an exponential space algorithm for bounded average degree by Cygan and Pilipczuk [ICALP 2013]. For counting perfect matching in graphs of average degree~dd we present an algorithm with running time O∗((2−ε(d))n/2)O^*((2-\varepsilon(d))^{n/2}) and polynomial space. Recent algorithms of this kind due to Cygan, Pilipczuk [ICALP 2013] and Izumi, Wadayama [FOCS 2012] (for bipartite graphs only) use exponential space.Comment: 18 pages, a revised version of this paper is available at http://arxiv.org/abs/1410.220
    • …
    corecore